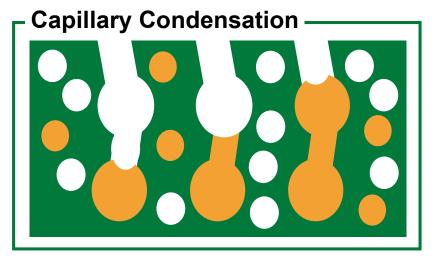

Agenda


- 1. Comparing Adsorbent Material Types
- 2. Combination Bed Designs
- 3. Customer Case Studies
- 4. Summary

Adsorption with Silica Gel Materials

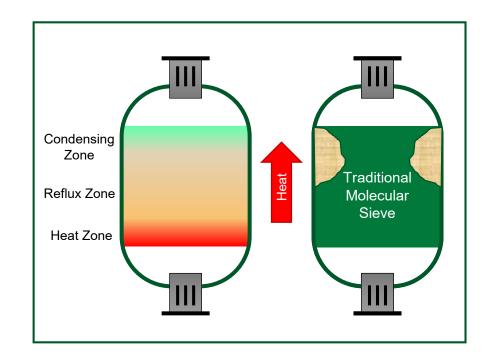
- Physical adsorption is selective binding of molecules on active surfaces of solids by non-valence forces like hydrogen bridging, Van-der-Waals forces and dipoledipole interactions
- Adsorption takes place in porous solids providing high internal surface areas of 500 – 1000 m²/g
- The driving forces for adsorption
 - Water is adsorbed by hydrogen bridging and capillary condensation
 - Hydrocarbons are adsorbed by capillary condensation

BASF Durasorb Aluminosilicate Gel Materials

- Durasorb HD is an amorphous, aluminosilicate gel with unique properties
 - Micro- and meso-porosity
 - High surface area
 - High crush strength
 - Low attrition
 - Low heat of adsorption
 - Acid Resistant
 - Stable to water and liquid hydrocarbon

Comparison of Silica Gels and Molecular Sieves

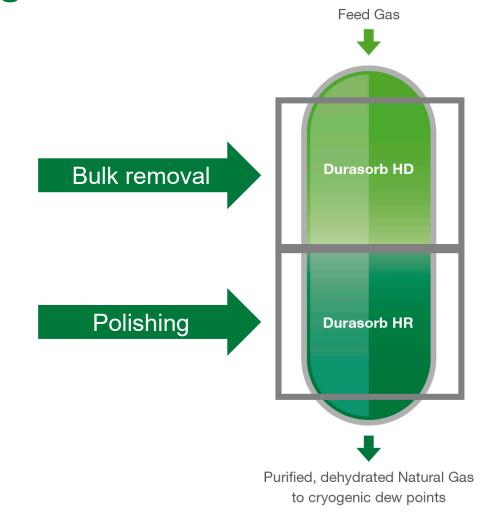
BASF Aluminosilicate Gels	Molecular Sieves
Selectivity based on chain length and polarity	Selectivity based on size only
Low heat of adsorption	High heat of adsorption
Acid resistant	Known to degrade in acidic conditions
Amorphous material	Leaching of clay binder leads to caking
Maintain structural integrity in refluxing environment	Break down in refluxing environment
Resistant to retrograde condensation	Coke formation in presence of hydrocarbons


The Problem of Regeneration Reflux

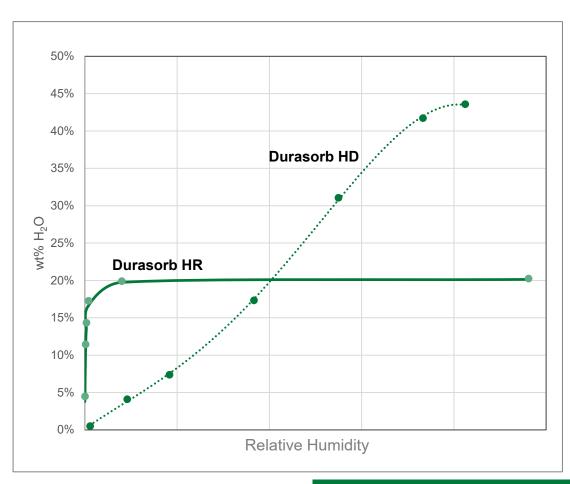
The Problem

- When heated, condensation can occur on the sides and top of the bed
- Traditional Molecular Sieves lose structural integrity during regeneration

The Solution


- Durasorb HD is resistant to liquid water and maintains mechanical stability, protecting the molecular sieve part of the bed
- Durasorb HR is attrition resistant and produces less fines

Durasorb Dehy Combination Bed Design


- Durasorb Dehy is the combination of two BASF products into a single solution to capitalize on the benefits from each product
 - Durasorb HD (<u>H</u>igh <u>D</u>urability): water resistant adsorbent
 - ▶ Durasorb HR (<u>H</u>igh <u>R</u>esistant): reflux resistant molecular sieve
- The combination of HD and HR increase the overall bed capacity by optimizing the ratio of the two products

Combination Bed Technology Creates a Superior Product

- Leverage the differences in performance between Durasorb HD and Durasorb HR for optimal water adsorption
 - Durasorb HD has a higher adsorption capacity at higher water saturation
 - Durasorb HR has higher adsorption capacity at lower water saturation values
- Durasorb HD is a very robust adsorbent that also adsorbs hydrocarbons
- Durasorb HR can reach very low water dewpoints required by a cryogenic unit

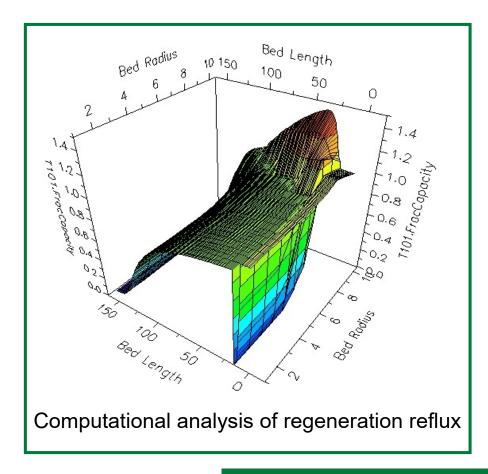
Customer Case Studies

Durasorb Design Improves Performance and Saves Costs

Case Study 1: Eliminating the effects of regeneration reflux

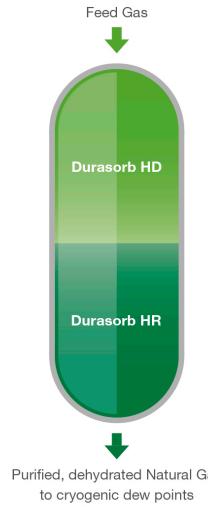
LNG Facility Experiencing Poor Dehydration Unit Performance

- 684 MMscf/d plant requiring deep dehydration prior to cryogenic separation
- Dehydration unit experiencing premature breakthrough
 - Caking of the molecular sieve lead to increased pressure drop and maldistribution of gas flow
 - Operations continuously decreasing cycle to meet spec, until there was no longer enough time for regeneration



Donut-ring formation from molecular sieve caking in the dehydration vessel

BASF Used Modeling Tools to Predict Refluxing Location


- Computational analysis was performed to predict the location of reflux in the bed
- Technology experts used analysis to design a combination bed
 - ► A 30% layer of water resistant Durasorb HD was placed at the inlet of the bed
 - The remainder of the bed was filled with specialty molecular sieve
 - As COS formation was a concern, a 3A type molecular sieve was chosen

Combination bed design increased unit lifetime 100%

- Using a Durasorb design, BASF increased bed life from 2 years to 4 years
 - After 28 months of operation
 - Still on extended adsorption cycle time
 - No sign of dP increase
 - Increased lifetime results in 1 less turnaround and saves over \$1.8MM in turnaround costs
 - No modifications to the internal structure of the vessel were necessary

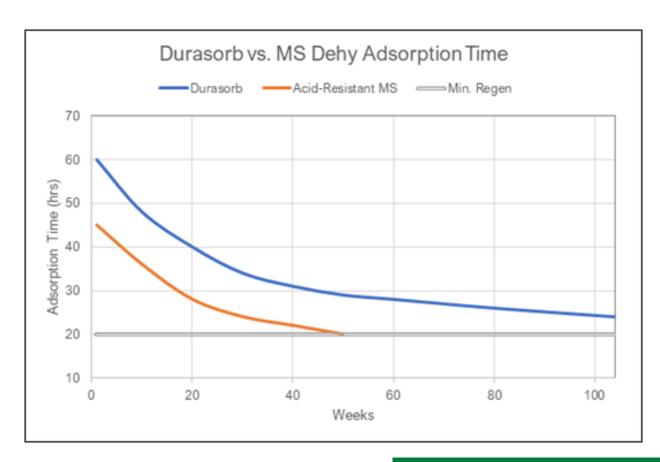
Case Study 2: Reducing the effects of retrograde condensation

Problems caused by high acid concentration and heavy gas feed

- North America NGL extraction plant experiencing reduced cycle time and pre-mature dehydration bed change out
 - Operations was experiencing freezing in the distillation column, causing unit shutdown and loss of production
- Analysis performed to identify the problem
 - Levels of heavy hydrocarbons were detected in the feed gas
 - Spent sample analysis of the molecular sieve showed both degradation (acidic environment) and coke formation (coking from hydrocarbons)
 - ► High CO2 containing feed gas was degrading the "acid-resistant" grade molecular sieve

Combination bed design addresses plant performance issues

- Combination bed design is robust and reliable in high acid gas and heavy gas conditions
 - Durasorb HD adsorbs HHCs, reducing the effects of retrograde condensation on the molecular sieve
 - Durasorb HD removes water from the feed gas with a high equilibrium capacity
 - Durasorb HD is an acid resistant adsorbent, therefore the high acid gas feed conditions do not impact the performance


Purified, dehydrated Natural Gas

Extending the life of the dehydration unit with high acid feed gas

Performance from combination bed design

- ► Longer cycle times = longer lifetime
 - Extended lifetime from 9 months to 24 months
- Reliable performance
 - No freezing of the distillation column
 - Continuous production
- Decreased operational costs
 - One less turn around saved 150 kUSD

Conclusion

- Durasorb dehydration bed designs solve problems caused by regeneration reflux and retrograde condensation, issues associated with molecular sieve dehydration beds
- Durasorb combination bed installation is a drop-in solution that, on average, doubles the lifetime previously achieved
- Durasorb HD is a robust material employed in current dehydration units to solve the problem of pre-mature failure
 - liquid hydrocarbon and water resistant
 - ability to adsorb both water and hydrocarbons
 - stability in acidic environments
- Reliable operation and performance leads to a reduction in operating costs and ensures continuous production

We create chemistry